Friday, 27 February 2015

galois theory - Proving that $mathbb{Q}$ adjoin the square root of every prime is an infinite extension

How would one show that $[\mathbb{Q}(\sqrt2, \sqrt3,...,\sqrt{p_n},...)]=\infty$? I know that we want to show there is no finite basis over the rationals, but I'm not sure how one would determine that such a basis does not exist.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...