I have a litle discution with a friend about the folowing limit:
$$\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n}$$
I would solve it like this: $$\lim_{n\to\infty} \sqrt[n]{\frac{n!}{n^{n}}} =0$$
or
$$\lim_{n\to\infty} \frac{\sqrt[n]{n}\sqrt[n]{n-1}\cdots\sqrt[n]{1}}{n}=\frac{1*1*1\cdots}{\infty}=0$$
and in this 2ยบ way would there be a problem with $1^{\infty}$? I would say that no, because there is no functions involved, since as much as I know this undetermination is because you would whant to avoid the situation such as $f(x)^{g(x)}$ where $f(x)\to1$ and $g(x)\to\infty$ Could anyone clarify this for me?
Saturday, 21 February 2015
real analysis - limit of nth root of factorial devided by n
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment