Tuesday, 10 February 2015

sequences and series - Find $lim_{nto infty} left(left(1+frac 1{n2^{n+1}}right)^n -1right)*2^n$.



I know the limit is $\frac 12$ and I proved it with sandwich theorem. Does anyone know how to prove it in a constructive way.



$$\lim_{n\to \infty} \left(\left(1+\frac 1{n2^{n+1}}\right)^n -1\right)*2^n$$


Answer



Hint $:$ Expand binomially



$$\left (1 + \frac {1} {n2^n} \right )^n.$$




You will see that all the terms of $\left(\left(1+\frac 1{n2^{n+1}}\right)^n -1\right)*2^n$ will vanish when $n \rightarrow \infty$ except that $\frac 1 2.$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...