How do you get from$$\int^\infty_0\int^\infty_0e^{-(x+y)^2} dx\ dy$$to
$$\frac{1}{2}\int^\infty_0\int^u_{-u}e^{-u^2} dv\ du?$$ I have tried using a change of variables formula but to no avail.
Edit: Ok as suggested I set $u=x+y$ and $v=x-y$, so I can see this gives $dx dy=\frac{1}{2}dudv$ but I still can't see how to get the new integration limits. Sorry if I'm being slow.
Wednesday, 25 February 2015
calculus - How to Evaluate $int^infty_0int^infty_0e^{-(x+y)^2} dx dy$
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment