The sum of series
11⋅3+14⋅5+17⋅7+110⋅9+⋯
My attempt n∑k=11(3k−2)(2k+1)=17n∑k=1[33k−2−22k+1]
=17n∑k=1∫10(3x3k−3−2x2k)dx
=17∫10(n∑k=13x3k−3−2x2k)dx
=17∫10[3(1−x3n)1−x3−2(1−x2n+2)1−x2]dx
How do i solve it Help me please
Answer
Such integrals can be expressed by the digamma function. One of the formulae for the digamma function is
ψ(z+1)=−γ+∫101−tz1−tdt
You have then
∫101−x3n1−x3dx=∫101−tn1−t13t−23dt=∫1013(1−tn−231−t−1−t−231−t)dt=13(ψ(n+13)−ψ(13))
∫10x2(1−x2n)1−x2dx=∫10t(1−tn)1−t12t−12dt=∫1012(21−tn+121−t−21−t121−t)dt=12(ψ(n+32)−ψ(32))
so
n∑k=11(3k−2)(2k+1)=17(ψ(n+13)−ψ(n+32)−ψ(13)+ψ(32))
The same formula can be derived faster, using the fact that ψ(n+z)−ψ(z)=n−1∑k=01z+k
so
n∑k=11k−23=n−1∑k=01k+13=ψ(n+13)−ψ(13)
n∑k=11k+12=n−1∑k=01k+32=ψ(n+32)−ψ(32)
If you want to calculate the infinite sum, you have
∞∑k=11(3k−2)(2k+1)=17∫10(31−x3−2x21−x2)dx==17∫10((11−x+x+2x2+x+1)−(−2+11−x+1x+1))dx==17∫10(x+2x2+x+1+2−1x+1)dx
and the last integral can be computed with standard methods for the integrals of rational functions:
∫10x+2x2+x+1dx=∫10(x+12)+32(x+12)2+34dx=t=2√3(x+12)=∫√31/√3t+√3t2+1dt==(12log(t2+1)+√3arctant)|t=√3t=1/√3==12log3+π√36
∫101x+1dx=log(x+1)|x=1x=0=log2
so
∞∑k=11(3k−2)(2k+1)=17(2+π√36+12log3−log2)
No comments:
Post a Comment