Tuesday, 10 February 2015

sum of series frac11cdot3+frac14cdot5+frac17cdot7+frac110cdot9+cdots




The sum of series



113+145+177+1109+




My attempt nk=11(3k2)(2k+1)=17nk=1[33k222k+1]




=17nk=110(3x3k32x2k)dx



=1710(nk=13x3k32x2k)dx



=1710[3(1x3n)1x32(1x2n+2)1x2]dx



How do i solve it Help me please


Answer



Such integrals can be expressed by the digamma function. One of the formulae for the digamma function is




ψ(z+1)=γ+101tz1tdt



You have then
101x3n1x3dx=101tn1t13t23dt=1013(1tn231t1t231t)dt=13(ψ(n+13)ψ(13))
10x2(1x2n)1x2dx=10t(1tn)1t12t12dt=1012(21tn+121t21t121t)dt=12(ψ(n+32)ψ(32))
so
nk=11(3k2)(2k+1)=17(ψ(n+13)ψ(n+32)ψ(13)+ψ(32))
The same formula can be derived faster, using the fact that ψ(n+z)ψ(z)=n1k=01z+k
so
nk=11k23=n1k=01k+13=ψ(n+13)ψ(13)

nk=11k+12=n1k=01k+32=ψ(n+32)ψ(32)



If you want to calculate the infinite sum, you have
k=11(3k2)(2k+1)=1710(31x32x21x2)dx==1710((11x+x+2x2+x+1)(2+11x+1x+1))dx==1710(x+2x2+x+1+21x+1)dx
and the last integral can be computed with standard methods for the integrals of rational functions:



10x+2x2+x+1dx=10(x+12)+32(x+12)2+34dx=t=23(x+12)=31/3t+3t2+1dt==(12log(t2+1)+3arctant)|t=3t=1/3==12log3+π36

101x+1dx=log(x+1)|x=1x=0=log2
so
k=11(3k2)(2k+1)=17(2+π36+12log3log2)


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...