Saturday, 14 February 2015

modular arithmetic - How to prove that $8^{18} - 1$ is divisible by $7$




How to prove that: $$ 8^{18}-1\equiv0\pmod7 $$

In the simplest way?


Answer



Yet another one: $a^{18}-b^{18}=(a-b)\left(a^{17}+a^{16}b+\cdots+ab^{16}+b^{17}\right) \ ,$ hence $$8^{18}-1=(8-1)\left(8^{17}+8^{16}+\cdots+8+1\right),\quad\text{which is a multiple of $7$.}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...