Saturday, 14 February 2015

modular arithmetic - How to prove that 8181 is divisible by 7




How to prove that: 8^{18}-1\equiv0\pmod7

In the simplest way?


Answer



Yet another one: a^{18}-b^{18}=(a-b)\left(a^{17}+a^{16}b+\cdots+ab^{16}+b^{17}\right) \ , hence 8^{18}-1=(8-1)\left(8^{17}+8^{16}+\cdots+8+1\right),\quad\text{which is a multiple of $7$.}


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...