Thursday, 16 April 2015

algebra precalculus - Verify trigonometric equation $frac{(sec{A}-csc{A})}{(sec A+csc A)}=frac{(tan A-1)}{(tan A+1)}$




How Would I verify the following identity.



$$\frac{(\sec{A}-\csc{A})}{(\sec A+\csc A)}=\frac{(\tan A-1)}{(\tan A+1)}$$



I simplified it to



$$\frac{(\sin{A}-\cos{A})}{(\sin{A} \cos{A})}\div\frac{(\sin{A}+\cos{A})}{(\sin{A}\cos{A})}$$


Answer



Hint: Start by multiplying top and bottom on the left by $\sin A$.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...