Monday, 13 April 2015

real analysis - $|x_n| to infty implies |f(x_n)| to infty$




Let $f:\mathbb{R} \to \mathbb{R}$ a continuous function.



Show that




1) $\lim \limits_{x\to +\infty} |f(x)|=\lim \limits_{x\to -\infty}|f(x)|=+\infty$



implies



2) $|x_n|\to \infty \implies |f(x_n)|\to \infty$.




I know that $f$ is continuous iff $x_n \to a \implies f(x_n)\to f(a)$.



But, can I use




$\lim|f(x_n)|= |f(\lim(x_n))|=\lim\limits_{x\to \infty} |f(x)|=+\infty$



for infinite cases so directly?



If the solution is not this way, could you help me by giving a hint how to do it?


Answer



The first condition means



$$\forall M \quad \exists \bar x : \forall x\, |x|>\bar x \quad |f(x)|>M$$




and from here the second follows, indeed we have



$$\forall \bar x \quad \exists \bar n : \forall n>\bar n \quad |x_n|> \bar x$$



that is



$$\forall M \quad \exists \bar n : \forall n>\bar n \quad |f(x_n)|>M$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...