Monday, 13 April 2015

real analysis - |xn|toinftyimplies|f(xn)|toinfty




Let f:RR a continuous function.



Show that




1) lim



implies



2) |x_n|\to \infty \implies |f(x_n)|\to \infty.




I know that f is continuous iff x_n \to a \implies f(x_n)\to f(a).



But, can I use




\lim|f(x_n)|= |f(\lim(x_n))|=\lim\limits_{x\to \infty} |f(x)|=+\infty



for infinite cases so directly?



If the solution is not this way, could you help me by giving a hint how to do it?


Answer



The first condition means



\forall M \quad \exists \bar x : \forall x\, |x|>\bar x \quad |f(x)|>M




and from here the second follows, indeed we have



\forall \bar x \quad \exists \bar n : \forall n>\bar n \quad |x_n|> \bar x



that is



\forall M \quad \exists \bar n : \forall n>\bar n \quad |f(x_n)|>M


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...