How can we compute this integral for all Re(a)>0 and Re(b)>0?
∫∞0xcos(ax)ebx−1 dx
Is there a way to compute it using methods from real analysis?
Answer
**my attempt **
I=∫∞0x cos(ax)ebx−1dx=∞∑n=1∫∞0x e−bnxcos(ax)dx=12∞∑n=1∫∞0x e−bnx (eiax−e−iax)dx=12∞∑n=1[∫∞0x e−(bn−ia)dx+∫∞0x e−(bn+ia)dx]=12∞∑n=1(Γ(2)(bn−ai)2+Γ(2)(bn+ia)2)=12b2∞∑n=01(n−aib)2+12b2∞∑n=01(n+aib)2+1a2
=1a2+12b2(Ψ1(aib)+Ψ1(−aib)) but we know Ψ(1)(−aib)=Ψ(1)(1−aib)−b2a2∴
so we have
\therefore I=\frac{1}{2a^2}+\frac{1}{2b^2}\left ( \frac{-\pi ^2}{sinh^2(\frac{\pi a}{b})} \right )\\ \\ \\ =\frac{1}{2a^2}-\frac{\pi ^2}{2b^2sinh^2(\frac{\pi a}{b})}\ \ \ \ \ \ , b>0
note that :
\frac{\pi ^2}{sin^2(\frac{i\pi a}{b})}=-\frac{\pi ^2}{sinh^2(\frac{\pi a}{b})}
No comments:
Post a Comment