Thursday, 30 April 2015

calculus - Evaluating the following integral: intinfty0fracxcos(ax)ebx1dx



How can we compute this integral for all Re(a)>0 and Re(b)>0?



0xcos(ax)ebx1 dx



Is there a way to compute it using methods from real analysis?



Answer



**my attempt **



I=0x cos(ax)ebx1dx=n=10x ebnxcos(ax)dx=12n=10x ebnx (eiaxeiax)dx=12n=1[0x e(bnia)dx+0x e(bn+ia)dx]=12n=1(Γ(2)(bnai)2+Γ(2)(bn+ia)2)=12b2n=01(naib)2+12b2n=01(n+aib)2+1a2
=1a2+12b2(Ψ1(aib)+Ψ1(aib)) but we know Ψ(1)(aib)=Ψ(1)(1aib)b2a2



so we have
\therefore I=\frac{1}{2a^2}+\frac{1}{2b^2}\left ( \frac{-\pi ^2}{sinh^2(\frac{\pi a}{b})} \right )\\ \\ \\ =\frac{1}{2a^2}-\frac{\pi ^2}{2b^2sinh^2(\frac{\pi a}{b})}\ \ \ \ \ \ , b>0



note that :
\frac{\pi ^2}{sin^2(\frac{i\pi a}{b})}=-\frac{\pi ^2}{sinh^2(\frac{\pi a}{b})}



No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...