Wednesday 29 April 2015

probability - Cdf and Pdf of independent random variables(iid)



Let $X_1, X_2,...,X_n$ be independent random variables, each having a uniform distribution over $(0,1)$. Let $Z:=\min(X_1, X_2,...,X_n)$ and $Y:=\max(X_1, X_2,...,X_n)$. I need to find the cdf and pdf of $Y$ and $Z$.



Cdf of $Y$ is $$F_Y(x)=P(Y
Then $f_Y(x)=F'_Y(x)=na^{n-1}$.



Cdf of $Z$ is $$F_Z(x)=P(Zz)= P(X_1>x,X_2>x,...X_n>x)=P(X_1>x)P(X_2>x)\ldots P(X_n>x)=1-a\cdot 1-a \cdot 1-a\cdot\ldots\cdot 1-a=[1-a]^n.$$
Then $f_Z(x)=F'_Z(x)=n[1-a]^{n-1}$.



Answer



Let $n \in \mathbb N$ and $X_1, X_2,...,X_n$ be $\sim^{iid}$ Unif$(0,1)$.



Define



$X_i:=\min(X_1, X_2,...,X_n)$



$X_a:=\max(X_1, X_2,...,X_n)$.



What are the distribution and densities of those?







Let $c \in \mathbb R$.



We have for $X_a$



$$P(X_a < c) = P(X_1

By independence, we have




$$=P(X_1

By identical distribution, we have



$$=[P(X_1

Hence we have



$$F_{Y}(c) = (a)^n$$




$$\to f_{Y}(a) = n(a)^{n-1} a'(c)$$



$$\to f_{Y}(a) = n(a)^{n-1} 1_{c \in [0,1]}$$






We have for $X_i$



$$P(X_i < c) = 1 - P(X_i \ge c)$$




By independence, we have



$$P(X_i \ge c)=P(X_1 \ge c)P(X_2 \ge c)...P(X_n \ge c)$$



By identical distribution, we have



$$=[P(X_1 \ge c)]^n$$



$$=[1-P(X_1 < c)]^n := [1-a(c)]^n$$




Hence we have



$$F_{X_i}(c) = 1-[1-a(c)]^n$$



$$\to f_{X_i}(c) = -n[1-a(c)]^{n-1}(-a'(c))$$



$$\to f_{X_i}(c) = n[1-a(c)]^{n-1} 1_{c \in [0,1]}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...