Tuesday, 28 April 2015

calculus - Find $limlimits_{ntoinfty}sumlimits_{k=1}^n frac{2k+1}{k^2(k+1)^2}$




I have to find the limit $$\lim_{n\to\infty}\sum_{k=1}^n \frac{2k+1}{k^2(k+1)^2}.$$ I tried to make it into a telescopic series but it doesn't really work out...



$$\lim_{n\to\infty} \sum_{k=1}^n \frac{2k+1}{k^2(k+1)^2}=\sum_{k=1}^n \left(\frac{1-k}{k^2}+\frac1{k+1}-\frac1{(k+1)^2} \right)$$ so that is what I did using telescopic...



I said that:



$$\frac{2k+1}{k^2(k+1)^2}=\frac{Ak+B}{k^2}+\frac C{k+1}+\frac D{(k+1)^2}$$ but now as I look at it.. I guess I should "build up the power" with the ${k^2}$ too, right?


Answer



$$\lim_{n\rightarrow\infty}\sum^{n}_{k=1}\bigg[\frac{1}{k^2}-\frac{1}{(k+1)^2}\bigg]$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...