Sunday, 12 April 2015

summation - How find this suminftyn=1frac(1)n1zetan(3)n=?




Question:




show that
n=1(1)n1ζn(3)n=19π4144034ζ(3)ln2?




where ζn(3)=nk=11k3




But I use this computer find this enter image description here



and my reslut is wrong? Thank you


Answer




\ds{\sum_{n = 1}^{\infty}{\pars{-1}^{n - 1}\zeta_{n}\pars{3} \over n} ={19\pi^{4} \over 1440} - {3 \over 4}\,\zeta\pars{3}\ln\pars{2}:\ {\large ?}. \qquad \zeta_{n}\pars{3} = \sum_{k = 1}^{n}{1 \over k^{3}}}




\begin{align}&\color{#c00000}{\sum_{n = 1}^{\infty} {\pars{-1}^{n - 1}\zeta_{n}\pars{3} \over n}} =\sum_{n = 1}^{\infty}{\pars{-1}^{n - 1} \over n}\sum_{k = 1}^{n}{1 \over k^{3}} =\sum_{k = 1}^{\infty}{1 \over k^{3}} \color{#00f}{\sum_{n = k}^{\infty}{\pars{-1}^{n - 1} \over n}} \end{align}




\begin{align}&\color{#00f}{\sum_{n = k}^{\infty} {\pars{-1}^{n - 1} \over n}}\color{#00f} =\sum_{n = k}^{\infty}\pars{-1}^{n - 1}\int_{0}^{1}x^{n - 1}\,\dd x =\int_{0}^{1}\sum_{n = k}^{\infty}\pars{-x}^{n - 1}\,\dd x =\int_{0}^{1}{\pars{-x}^{k - 1} \over 1 - \pars{-x}}\,\dd x \\[3mm]&=\int_{0}^{1}{\pars{-x}^{k - 1} \over 1 + x}\,\dd x \end{align}




\begin{align}&\color{#c00000}{\sum_{n = 1}^{\infty} {\pars{-1}^{n - 1}\zeta_{n}\pars{3} \over n}} =\sum_{k = 1}^{\infty}{1 \over k^{3}} \int_{0}^{1}{\pars{-x}^{k - 1} \over 1 + x}\,\dd x =-\int_{0}^{1}\sum_{k = 1}^{\infty}{\pars{-x}^{k} \over k^{3}} \,{1 \over x\pars{1 + x}}\,\dd x \\[3mm]&=-\int_{0}^{1}{{\rm Li}_{3}\pars{-x} \over x\pars{1 + x}}\,\dd x =\int_{-1}^{0}{{\rm Li}_{3}\pars{x} \over x\pars{1 - x}}\,\dd x =\int_{-1}^{0}{{\rm Li}_{3}\pars{x} \over x}\,\dd x +\int_{-1}^{0}{{\rm Li}_{3}\pars{x} \over 1 - x}\,\dd x \\[3mm]&=-{\rm Li}_{4}\pars{-1} + {\rm Li}_{3}\pars{-1}\ln\pars{2} +\int_{-1}^{0}\ln\pars{1 - x}{\rm Li}_{3}'\pars{x}\,\dd x \\[3mm]&=-{\rm Li}_{4}\pars{-1} + {\rm Li}_{3}\pars{-1}\ln\pars{2} -\int_{-1}^{0}x{\rm Li}_{2}'\pars{x}\,{{\rm Li}_{2}\pars{x} \over x}\,\dd x \end{align}





\begin{align} \color{#c00000}{\sum_{n = 1}^{\infty} {\pars{-1}^{n - 1}\zeta_{n}\pars{3} \over n}} &={\large-{\rm Li}_{4}\pars{-1} + {\rm Li}_{3}\pars{-1}\ln\pars{2} +\half\,{\rm Li}_{2}^{2}\pars{-1}} \\[3mm]\mbox{and}&\qquad \left\lbrace\begin{array}{rcl} {\rm Li}_{4}\pars{-1} & = & -\,{7\pi^{4} \over 720} \\ {\rm Li}_{3}\pars{-1} & = & -\,{3 \over 4}\,\zeta\pars{3} \\ {\rm Li}_{2}\pars{-1} & = & -\,{\pi^{2} \over 12} \end{array}\right. \end{align}




\color{#66f}{\large% \sum_{n = 1}^{\infty}{\pars{-1}^{n - 1}\zeta_{n}\pars{3} \over n} ={19\pi^{4} \over 1440} - {3 \over 4}\,\zeta\pars{3}\ln\pars{2}} \approx 0.6604



No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...