Question:
show that
∞∑n=1(−1)n−1ζn(3)n=19π41440−34ζ(3)ln2?
where ζn(3)=n∑k=11k3
But I use this computer find this
and my reslut is wrong? Thank you
Answer
\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}
\ds{\sum_{n = 1}^{\infty}{\pars{-1}^{n - 1}\zeta_{n}\pars{3} \over n} ={19\pi^{4} \over 1440} - {3 \over 4}\,\zeta\pars{3}\ln\pars{2}:\ {\large ?}. \qquad \zeta_{n}\pars{3} = \sum_{k = 1}^{n}{1 \over k^{3}}}
\begin{align}&\color{#c00000}{\sum_{n = 1}^{\infty} {\pars{-1}^{n - 1}\zeta_{n}\pars{3} \over n}} =\sum_{n = 1}^{\infty}{\pars{-1}^{n - 1} \over n}\sum_{k = 1}^{n}{1 \over k^{3}} =\sum_{k = 1}^{\infty}{1 \over k^{3}} \color{#00f}{\sum_{n = k}^{\infty}{\pars{-1}^{n - 1} \over n}} \end{align}
\begin{align}&\color{#00f}{\sum_{n = k}^{\infty} {\pars{-1}^{n - 1} \over n}}\color{#00f} =\sum_{n = k}^{\infty}\pars{-1}^{n - 1}\int_{0}^{1}x^{n - 1}\,\dd x =\int_{0}^{1}\sum_{n = k}^{\infty}\pars{-x}^{n - 1}\,\dd x =\int_{0}^{1}{\pars{-x}^{k - 1} \over 1 - \pars{-x}}\,\dd x \\[3mm]&=\int_{0}^{1}{\pars{-x}^{k - 1} \over 1 + x}\,\dd x \end{align}
\begin{align}&\color{#c00000}{\sum_{n = 1}^{\infty} {\pars{-1}^{n - 1}\zeta_{n}\pars{3} \over n}} =\sum_{k = 1}^{\infty}{1 \over k^{3}} \int_{0}^{1}{\pars{-x}^{k - 1} \over 1 + x}\,\dd x =-\int_{0}^{1}\sum_{k = 1}^{\infty}{\pars{-x}^{k} \over k^{3}} \,{1 \over x\pars{1 + x}}\,\dd x \\[3mm]&=-\int_{0}^{1}{{\rm Li}_{3}\pars{-x} \over x\pars{1 + x}}\,\dd x =\int_{-1}^{0}{{\rm Li}_{3}\pars{x} \over x\pars{1 - x}}\,\dd x =\int_{-1}^{0}{{\rm Li}_{3}\pars{x} \over x}\,\dd x +\int_{-1}^{0}{{\rm Li}_{3}\pars{x} \over 1 - x}\,\dd x \\[3mm]&=-{\rm Li}_{4}\pars{-1} + {\rm Li}_{3}\pars{-1}\ln\pars{2} +\int_{-1}^{0}\ln\pars{1 - x}{\rm Li}_{3}'\pars{x}\,\dd x \\[3mm]&=-{\rm Li}_{4}\pars{-1} + {\rm Li}_{3}\pars{-1}\ln\pars{2} -\int_{-1}^{0}x{\rm Li}_{2}'\pars{x}\,{{\rm Li}_{2}\pars{x} \over x}\,\dd x \end{align}
\begin{align} \color{#c00000}{\sum_{n = 1}^{\infty} {\pars{-1}^{n - 1}\zeta_{n}\pars{3} \over n}} &={\large-{\rm Li}_{4}\pars{-1} + {\rm Li}_{3}\pars{-1}\ln\pars{2} +\half\,{\rm Li}_{2}^{2}\pars{-1}} \\[3mm]\mbox{and}&\qquad \left\lbrace\begin{array}{rcl} {\rm Li}_{4}\pars{-1} & = & -\,{7\pi^{4} \over 720} \\ {\rm Li}_{3}\pars{-1} & = & -\,{3 \over 4}\,\zeta\pars{3} \\ {\rm Li}_{2}\pars{-1} & = & -\,{\pi^{2} \over 12} \end{array}\right. \end{align}
\color{#66f}{\large% \sum_{n = 1}^{\infty}{\pars{-1}^{n - 1}\zeta_{n}\pars{3} \over n} ={19\pi^{4} \over 1440} - {3 \over 4}\,\zeta\pars{3}\ln\pars{2}} \approx 0.6604
No comments:
Post a Comment