Sunday, 12 April 2015

summation - How find this $sum_{n=1}^{infty}frac{(-1)^{n-1}zeta_{n}(3)}{n}=?$




Question:




show that
$$\sum_{n=1}^{\infty}\dfrac{(-1)^{n-1}\zeta_{n}(3)}{n}=\dfrac{19\pi^4}{1440}-\dfrac{3}{4}\zeta{(3)}\ln{2}?$$




where $$\zeta_{n}(3)=\sum_{k=1}^{n}\dfrac{1}{k^3}$$




But I use this computer find this enter image description here



and my reslut is wrong? Thank you


Answer



$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}

\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}

\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}

\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\sum_{n = 1}^{\infty}{\pars{-1}^{n - 1}\zeta_{n}\pars{3} \over n}
={19\pi^{4} \over 1440} - {3 \over 4}\,\zeta\pars{3}\ln\pars{2}:\ {\large ?}.
\qquad \zeta_{n}\pars{3} = \sum_{k = 1}^{n}{1 \over k^{3}}}$




\begin{align}&\color{#c00000}{\sum_{n = 1}^{\infty}
{\pars{-1}^{n - 1}\zeta_{n}\pars{3} \over n}}
=\sum_{n = 1}^{\infty}{\pars{-1}^{n - 1} \over n}\sum_{k = 1}^{n}{1 \over k^{3}}

=\sum_{k = 1}^{\infty}{1 \over k^{3}}
\color{#00f}{\sum_{n = k}^{\infty}{\pars{-1}^{n - 1} \over n}}
\end{align}




\begin{align}&\color{#00f}{\sum_{n = k}^{\infty}
{\pars{-1}^{n - 1} \over n}}\color{#00f}
=\sum_{n = k}^{\infty}\pars{-1}^{n - 1}\int_{0}^{1}x^{n - 1}\,\dd x
=\int_{0}^{1}\sum_{n = k}^{\infty}\pars{-x}^{n - 1}\,\dd x
=\int_{0}^{1}{\pars{-x}^{k - 1} \over 1 - \pars{-x}}\,\dd x

\\[3mm]&=\int_{0}^{1}{\pars{-x}^{k - 1} \over 1 + x}\,\dd x
\end{align}




\begin{align}&\color{#c00000}{\sum_{n = 1}^{\infty}
{\pars{-1}^{n - 1}\zeta_{n}\pars{3} \over n}}
=\sum_{k = 1}^{\infty}{1 \over k^{3}}
\int_{0}^{1}{\pars{-x}^{k - 1} \over 1 + x}\,\dd x
=-\int_{0}^{1}\sum_{k = 1}^{\infty}{\pars{-x}^{k} \over k^{3}}
\,{1 \over x\pars{1 + x}}\,\dd x

\\[3mm]&=-\int_{0}^{1}{{\rm Li}_{3}\pars{-x} \over x\pars{1 + x}}\,\dd x
=\int_{-1}^{0}{{\rm Li}_{3}\pars{x} \over x\pars{1 - x}}\,\dd x
=\int_{-1}^{0}{{\rm Li}_{3}\pars{x} \over x}\,\dd x
+\int_{-1}^{0}{{\rm Li}_{3}\pars{x} \over 1 - x}\,\dd x
\\[3mm]&=-{\rm Li}_{4}\pars{-1} + {\rm Li}_{3}\pars{-1}\ln\pars{2}
+\int_{-1}^{0}\ln\pars{1 - x}{\rm Li}_{3}'\pars{x}\,\dd x
\\[3mm]&=-{\rm Li}_{4}\pars{-1} + {\rm Li}_{3}\pars{-1}\ln\pars{2}
-\int_{-1}^{0}x{\rm Li}_{2}'\pars{x}\,{{\rm Li}_{2}\pars{x} \over x}\,\dd x
\end{align}





\begin{align}
\color{#c00000}{\sum_{n = 1}^{\infty}
{\pars{-1}^{n - 1}\zeta_{n}\pars{3} \over n}}
&={\large-{\rm Li}_{4}\pars{-1} + {\rm Li}_{3}\pars{-1}\ln\pars{2}
+\half\,{\rm Li}_{2}^{2}\pars{-1}}
\\[3mm]\mbox{and}&\qquad
\left\lbrace\begin{array}{rcl}
{\rm Li}_{4}\pars{-1} & = & -\,{7\pi^{4} \over 720}
\\

{\rm Li}_{3}\pars{-1} & = & -\,{3 \over 4}\,\zeta\pars{3}
\\
{\rm Li}_{2}\pars{-1} & = & -\,{\pi^{2} \over 12}
\end{array}\right.
\end{align}




$$\color{#66f}{\large%
\sum_{n = 1}^{\infty}{\pars{-1}^{n - 1}\zeta_{n}\pars{3} \over n}
={19\pi^{4} \over 1440} - {3 \over 4}\,\zeta\pars{3}\ln\pars{2}}

\approx 0.6604
$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...