Thursday, 30 April 2015

calculus - Evaluate $sumlimits_{n=0}^{infty}sumlimits_{r=0}^{n}left(frac{1}{(n-r)!}a^{n-r}right)left(frac{1}{r!}b^{r}right)$



I'd like to Prove that $\sum\limits_{n=0}^{\infty}\sum\limits_{r=0}^{n}\left(\frac{1}{(n-r)!}a^{n-r}\right)\left(\frac{1}{r!}b^{r}\right)=\left(\sum\limits_{n=0}^{\infty}\frac{1}{n!}a^n\right)\left(\sum\limits_{n=0}^{\infty}\frac{1}{n!}b^n\right)$




I do as follow




$\sum\limits_{n=0}^{\infty}\sum\limits_{r=0}^{n}\left(\frac{1}{(n-r)!}a^{n-r}\right)\left(\frac{1}{r!}b^{r}\right)=\sum\limits_{r=0}^{0}\left(\frac{1}{(0-r)!}a^{0-r}\right)\left(\frac{1}{r!}b^{r}\right)+\sum\limits_{r=0}^{1}\left(\frac{1}{(1-r)!}a^{1-r}\right)\left(\frac{1}{r!}b^{r}\right)+\sum\limits_{r=0}^{2}\left(\frac{1}{(2-r)!}a^{2-r}\right)\left(\frac{1}{r!}b^{r}\right)+\cdots$




I couldn't able to get the right hand



Any help will be appreciated! Thanks



Answer



You might find it easier to start from the RHS and show that



$$ \left(\sum_{n=0}^{\infty}\frac{1}{n!}a^n\right)\left(\sum_{n=0}^{\infty}\frac{1}{n!}b^n\right) = \sum\limits_{n=0}^{\infty}\sum_{r=0}^{n}\left(\frac{1}{(n-r)!}a^{n-r}\right)\left(\frac{1}{r!}b^{r}\right). $$



Actually, for me this is the only step. It's just how you multiply two series.



Something more interesting would be to see what you can make of



$$ \frac{1}{(n-r)!r!}a^{n - r}b^r = \frac{1}{n!} \binom{n}{r} a^{n - r}b^r $$




and the Binomial Theorem.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...