Let X be a non-negative random variable and FX the corresponding CDF. Show,
E(X)=∫∞0(1−FX(t))dt
when X has : a) a discrete distribution, b) a continuous distribution.
I assumed that for the case of a continuous distribution, since FX(t)=P(X≤t), then 1−FX(t)=1−P(X≤t)=P(X>t). Although how useful integrating that is, I really have no idea.
Answer
For every nonnegative random variable X, whether discrete or continuous or a mix of these,
X=∫X0dt=∫+∞01X>tdt=∫+∞01X⩾
hence
\mathrm E(X)=\int_0^{+\infty}\mathrm P(X\gt t)\,\mathrm dt=\int_0^{+\infty}\mathrm P(X\geqslant t)\,\mathrm dt.
Likewise, for every p>0, X^p=\int_0^Xp\,t^{p-1}\,\mathrm dt=\int_0^{+\infty}\mathbf 1_{X\gt t}\,p\,t^{p-1}\,\mathrm dt=\int_0^{+\infty}\mathbf 1_{X\geqslant t}\,p\,t^{p-1}\,\mathrm dt,
hence
\mathrm E(X^p)=\int_0^{+\infty}p\,t^{p-1}\,\mathrm P(X\gt t)\,\mathrm dt=\int_0^{+\infty}p\,t^{p-1}\,\mathrm P(X\geqslant t)\,\mathrm dt.
No comments:
Post a Comment