Monday, 13 April 2015

probability - Explain why E(X)=inti0nfty(1FX(t)),dt for every nonnegative random variable X




Let X be a non-negative random variable and FX the corresponding CDF. Show,
E(X)=0(1FX(t))dt
when X has : a) a discrete distribution, b) a continuous distribution.





I assumed that for the case of a continuous distribution, since FX(t)=P(Xt), then 1FX(t)=1P(Xt)=P(X>t). Although how useful integrating that is, I really have no idea.


Answer



For every nonnegative random variable X, whether discrete or continuous or a mix of these,
X=X0dt=+01X>tdt=+01X
hence





\mathrm E(X)=\int_0^{+\infty}\mathrm P(X\gt t)\,\mathrm dt=\int_0^{+\infty}\mathrm P(X\geqslant t)\,\mathrm dt.







Likewise, for every p>0, X^p=\int_0^Xp\,t^{p-1}\,\mathrm dt=\int_0^{+\infty}\mathbf 1_{X\gt t}\,p\,t^{p-1}\,\mathrm dt=\int_0^{+\infty}\mathbf 1_{X\geqslant t}\,p\,t^{p-1}\,\mathrm dt,

hence




\mathrm E(X^p)=\int_0^{+\infty}p\,t^{p-1}\,\mathrm P(X\gt t)\,\mathrm dt=\int_0^{+\infty}p\,t^{p-1}\,\mathrm P(X\geqslant t)\,\mathrm dt.



No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...