Tuesday 21 April 2015

calculus - Proof of $int_0^infty left(frac{sin x}{x}right)^2 mathrm dx=frac{pi}{2}.$



I am looking for a short proof that $$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 \mathrm dx=\frac{\pi}{2}.$$
What do you think?



It is kind of amazing that $$\int_0^\infty \frac{\sin x}{x} \mathrm dx$$ is also $\frac{\pi}{2}.$ Many proofs of this latter one are already in this post.


Answer



Let $f(x)=\max\{0,1-|x|\}$. It is easy to calculate the Fourier transform
$$\hat{f}(\xi)=\int_{-\infty}^{\infty}f(x)e^{-ix\xi}dx=\left(\frac{\sin(\xi/2)}{\xi/2}\right)^2.$$

Taking the inverse Fourier transform, we get
$$\int_{-\infty}^{\infty}\left(\frac{\sin(\xi/2)}{\xi/2}\right)^2e^{ix\xi}d\xi=2\pi f(x),$$
and the result follows.



The second integral can be computed in a similar way. Just take $f(x)=\chi_{[-1,1]}(x)$ (the indicator function of the interval $[-1,1]$).






Edit. It might be interesting to note that there are analogous formulas for the sinc
sums

$$\sum_{n=1}^{\infty}\frac{\sin n}{n}=\sum_{n=1}^{\infty}\left(\frac{\sin n}{n}\right)^2=
\frac{\pi}{2}-\frac{1}{2}.$$



I learned about this from the note "Surprising Sinc Sums and Integrals" by Baillie, Borwein, and Borwein (can be found through a quick web search).


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...