how to prove that the recursive sequence $a_0\ge 0$, $a_{n+1}=\frac{3(1+a_n)}{3+a_n}$ is a cauchy sequence? The sequence seems to be bounded and if the sequence is monotonic increasing (I still dont know if it is..), it is convergent, then the sequence must be cauchy. But how to prove with the definition of cauchy sequence if the sequence is cauchy? If I try to start with $|a_{n+1}-a_n|=...$ I don't do useful calculations.. Regards
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment