I have a question about Euler's formula
eix=cos(x)+isin(x)
I want to show
sin(ax)sin(bx)=12(cos((a−b)x)−cos((a+b)x))
and
cos(ax)cos(bx)=12(cos((a−b)x)+cos((a+b)x))
I'm not really sure how to get started here.
Can someone help me?
Answer
sin(ax)sin(bx)=(eaix−e−aix2i)(ebix−e−bix2i)=e(a+b)ix−e(a−b)ix−e(b−a)ix+e−(a+b)ix−4=−12(e(a+b)ix+e−(a+b)ix2−e(a−b)ix+e−(a−b)ix2)=12(cos(a−b)x−cos(a+b)x)
same method you can do with cos(ax)cos(bx)
Edit:
∫sin(ax)sin(bx)dx=12∫[cos(a−b)x−cos(a+b)x]dx=12∫cos(a−b)xdx−12∫cos(a+b)xdx=
now to order calculate ∫cos(a+b)xdx write
t=(a+b)x⇒x=ta+b⇒dx=1a+bdt∫cos(a+b)xdx=1a+b∫cos(t)dt=1a+bsin(t)=1a+bsin(a+b)x+C
No comments:
Post a Comment