Thursday, 23 April 2015

complex numbers - Question about Euler's formula



I have a question about Euler's formula



eix=cos(x)+isin(x)



I want to show



sin(ax)sin(bx)=12(cos((ab)x)cos((a+b)x))




and



cos(ax)cos(bx)=12(cos((ab)x)+cos((a+b)x))



I'm not really sure how to get started here.



Can someone help me?


Answer



sin(ax)sin(bx)=(eaixeaix2i)(ebixebix2i)=e(a+b)ixe(ab)ixe(ba)ix+e(a+b)ix4=12(e(a+b)ix+e(a+b)ix2e(ab)ix+e(ab)ix2)=12(cos(ab)xcos(a+b)x)




same method you can do with cos(ax)cos(bx)






Edit:
sin(ax)sin(bx)dx=12[cos(ab)xcos(a+b)x]dx=12cos(ab)xdx12cos(a+b)xdx=



now to order calculate cos(a+b)xdx write
t=(a+b)xx=ta+bdx=1a+bdtcos(a+b)xdx=1a+bcos(t)dt=1a+bsin(t)=1a+bsin(a+b)x+C



No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...