Monday, 27 July 2015

calculus - Evaluating limxto0fracsqrt1cosx21cosx




I'm trying to evaluate the following limit:
lim
I've tried multiplying by the conjugate and variable substitution. I had a look at wolfram alpha and it said that \lim_{x \to 0} \frac{\sqrt{1- \cos x^2}}{1 - \cos x}=\sqrt{2}, though I'm interested in the process to achieve that.



Any help would be much appreciated / actually finding the limit.



Thanks


Answer



Note: I am using the limit \lim_{\theta \to 0}\frac{\sin \theta}{\theta}=1 and the identity 1-\cos 2A=2\sin^2 A.




\begin{align*} \lim_{x \to 0} \frac{\sqrt{1- \cos x^2}}{1 - \cos x} & = \lim_{x \to 0} \frac{\sqrt{2 \sin^2 \left(x^2/2\right)}}{2 \sin^2 \left(x/2\right)}\\ & = \lim_{x \to 0} \frac{\sin \left(x^2/2\right)}{\sqrt{2}\sin^2 \left(x/2\right)}\\ & = \frac{1}{\sqrt{2}}\lim_{x \to 0} \frac{\sin \left(x^2/2\right)}{x^2/2}\frac{(x/2)^2}{\sin^2 \left(x/2\right)}.2\\ & =\sqrt{2}. \end{align*}


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...