Monday, 27 July 2015

calculus - $sum_{n=2}^{infty} frac{1}{n log n}$ Prove series diverge using comparsion test .

prove $$\sum_{n=2}^{\infty} \frac{1}{n \log n}$$ diverge. I have done this problem using cauchy integral test and condensation test. But i want to do it by comparison test or by limit comparison test . any hint about that .



Thanks in advanced.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...