I am struggling to understand how the analytic continuation of the Riemann Zeta function is derived to extend it to all complex values $z$ not equal to $1$, starting with the series which converges only for $Re(z)>1$. Can someone provide a relatively simple/intuitive explanation of how this is achieved? Also, I understand that analytic continuation is unique, so there is only one analytic continuation of the Riemann Zeta Function, right?
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment