Sunday 26 July 2015

combinatorics - Prove the identity $sum^{n}_{k=0}binom{m+k}{k} = binom{n+m+1}{n}$




Let $n,m \in \mathbb{N}$. Prove the identity $$\sum^{n}_{k=0}\binom{m+k}{k} = \binom{n+m+1}{n}$$





This seems very similar to Vandermonde identity, which states that for nonnegative integers we have $\sum^{m}_{k=0}\binom{m}{k}\binom{n}{r-k} = \binom{m+n}{r}$. But, clearly this identity is somehow different from it. Any ideas?


Answer



We can write $\displaystyle \sum^{n}_{k=0}\binom{m+k}{k} = \sum^{n}_{k=0}\binom{m+k}{m} = \binom{m+0}{m}+\binom{m+1}{m}+........+\binom{m+n}{m}.$



Now Using Coefficient of $x^r$ in $(1+x)^{t} $ is $\displaystyle = \binom{t}{r}.$



So we can write above series as...



Coefficient of $x^m$ in $$\displaystyle \left[(1+x)^m+(1+x)^{m+1}+..........+(1+x)^{m+n}\right] = \frac{(1+x)^{m+n+1}-(1+x)^{m}}{(1+x)-1} = \frac{(1+x)^{m+n+1}-(1+x)^{m}}{x}$$




above we have used Sum of Geometric Progression.



So we get Coefficient of $x^{m+1}$ in $\displaystyle \left[(1+x)^{m+n+1}-(1+x)^{m}\right] = \binom{m+n+1}{m+1} = \binom{m+n+1}{n}.$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...