Let (an)n≥1,a1=1,an+1=1+an√n+1.
Find lim
These is my try:
I intercalated the limit like that
L=\lim_{n\to\infty} \frac{a_1+a_2+\cdots+a_n}{\sqrt{n+1}}\frac{\sqrt{n+1}}{1+\frac{1}{\sqrt2}+\cdots+\frac{1}{\sqrt{n}}}.
The second term of the limit tends to 2.
The first one, after Cesaro-Stols, become:
\lim_{n\to\infty}a_{n+1}(\sqrt{n+1}+\sqrt{n+2})
I tried to intercalate the term a_n between 2 terms in function of n, just like a_n<\frac{1}{\sqrt{n}} or something like that to use the sandwich theorem. Any ideas of this kind of terms? Or other ideas for the problem?
Answer
Stolz–Cesàro is a way to go, but applied to
S_n=\sum\limits_{k=1}^n a_n and T_n=\sum\limits_{k=1}^n \frac{1}{\sqrt{k}}, where T_n is strictly monotone and divergent sequence (T_n >\sqrt{n}). Then
\lim\limits_{n\rightarrow\infty}\frac{S_{n+1}-S_n}{T_{n+1}-T_n}= \lim\limits_{n\rightarrow\infty}\frac{a_{n+1}}{\frac{1}{\sqrt{n+1}}}= \lim\limits_{n\rightarrow\infty} \left(1+a_n\right)=\\ \lim\limits_{n\rightarrow\infty} \left(1+\frac{1+a_{n-1}}{\sqrt{n}}\right)= \lim\limits_{n\rightarrow\infty} \left(1+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n(n-1)}}+\frac{a_{n-2}}{\sqrt{n(n-1)}}\right)=\\ \lim\limits_{n\rightarrow\infty} \left(1+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n(n-1)}}+\frac{1}{\sqrt{n(n-1)(n-2)}}+...+\frac{a_1}{\sqrt{n!}}\right)=\\ 1+\lim\limits_{n\rightarrow\infty} \left(\frac{1}{\sqrt{n}}\left(1+\frac{1}{\sqrt{n-1}}+\frac{1}{\sqrt{(n-1)(n-2)}}+...+\frac{1}{\sqrt{(n-1)!}}\right)\right)
Now, for
\lim\limits_{n\rightarrow\infty} \left(\frac{1}{\sqrt{n}}\left(1+\frac{1}{\sqrt{n-1}}+\frac{1}{\sqrt{(n-1)(n-2)}}+...+\frac{1}{\sqrt{(n-1)!}}\right)\right) \tag{1}
we have
0<\frac{1}{\sqrt{n}}\left(1+\frac{1}{\sqrt{n-1}}+\frac{1}{\sqrt{(n-1)(n-2)}}+\frac{1}{\sqrt{(n-1)(n-2)(n-3)}}+...+\frac{1}{\sqrt{(n-1)!}}\right)< \frac{1}{\sqrt{n}}\left(1+\frac{1}{\sqrt{n-1}}+\frac{1}{\sqrt{(n-1)(n-2)}}+\frac{1}{\sqrt{(n-1)(n-2)}}+...+\frac{1}{\sqrt{(n-1)(n-2)}}\right) =\\\frac{1}{\sqrt{n}}\left(1+\frac{1}{\sqrt{n-1}}+\frac{n-3}{\sqrt{(n-1)(n-2)}}\right)\rightarrow 0
Finally, (1) has 0 as the limit, \frac{S_{n+1}-S_n}{T_{n+1}-T_n} has 1 as the limit. The original sequence has 1 as the limit as well.
No comments:
Post a Comment