Friday 31 July 2015

calculus - Find limit of $lim_{xto 0}{left(sqrt{x^6+5x^4+7x^2}cos(1+x^{-1000})right)}$, if it exists



Continuing my practice at solving limits, I'm currently trying to solve the following limit:



$$\lim_{x\to 0}{\left(\sqrt{x^6+5x^4+7x^2}\cos(1+x^{-1000})\right)}$$



What I've done:




I know that since the cosine is an oscillating function, $\cos(\infty)$ doesn't converge to a single value, but I thought that, perhaps, by using trigonometric formulas and various tricks, I could bring the limit to a form that can be solved, but in vain.



Here is an attempt using the trigonometric formula $\cos(x+y)=\cos(x)\cos(y)-\sin(x)\sin(y)$:



$$
\begin{align}
l
& = \lim_{x\to 0}{\left(\sqrt{x^6+5x^4+7x^2}\cdot \cos(1+x^{-1000})\right)}\\
& = \lim_{x\to 0}{\left(\sqrt{x^6+5x^4+7x^2}\right)}\cdot

\lim_{x\to 0}{\left(\cos(1)\cos(x^{-1000})-\sin(1)\sin(x^{-1000})\right)}\\
& = 0\ \cdot \lim_{x\to 0}{\left({{\cos(1)}\over{1/\cos(x^{-1000})}}-{{\sin(1)}\over{1/\sin(x^{-1000})}}\right)}\\
\end{align}
$$



Question:



Can the above limit be solved or it's simply undefined, since $\cos(\infty)$ diverges?


Answer



You are correct, the limit is $0$. Another elegant way to prove is using squeeze theorem.




Using $$-1 \le \cos (x) \le 1$$



We've



$$ -\sqrt{x^6+5x^4+7x^2} \le {\left(\sqrt{x^6+5x^4+7x^2}\cos(1+x^{-1000})\right)} \le \sqrt{x^6+5x^4+7x^2}$$



Thus,



$$\lim_{x\to 0} \sqrt{x^6+5x^4+7x^2} \le \lim_{x\to 0}{\left(\sqrt{x^6+5x^4+7x^2}\cos(1+x^{-1000})\right)} \le \lim_{x\to 0}\sqrt{x^6+5x^4+7x^2}$$




$$\implies 0\le \lim_{x\to 0}{\left(\sqrt{x^6+5x^4+7x^2}\cos(1+x^{-1000})\right)} \le 0$$



$$\implies \color{blue}{\lim_{x\to 0}{\left(\sqrt{x^6+5x^4+7x^2}\cos(1+x^{-1000})\right)}=0}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...