Friday, 31 July 2015

calculus - Find limit of limxto0left(sqrtx6+5x4+7x2cos(1+x1000)right), if it exists



Continuing my practice at solving limits, I'm currently trying to solve the following limit:



lim



What I've done:




I know that since the cosine is an oscillating function, \cos(\infty) doesn't converge to a single value, but I thought that, perhaps, by using trigonometric formulas and various tricks, I could bring the limit to a form that can be solved, but in vain.



Here is an attempt using the trigonometric formula \cos(x+y)=\cos(x)\cos(y)-\sin(x)\sin(y):



\begin{align} l & = \lim_{x\to 0}{\left(\sqrt{x^6+5x^4+7x^2}\cdot \cos(1+x^{-1000})\right)}\\ & = \lim_{x\to 0}{\left(\sqrt{x^6+5x^4+7x^2}\right)}\cdot \lim_{x\to 0}{\left(\cos(1)\cos(x^{-1000})-\sin(1)\sin(x^{-1000})\right)}\\ & = 0\ \cdot \lim_{x\to 0}{\left({{\cos(1)}\over{1/\cos(x^{-1000})}}-{{\sin(1)}\over{1/\sin(x^{-1000})}}\right)}\\ \end{align}



Question:



Can the above limit be solved or it's simply undefined, since \cos(\infty) diverges?


Answer



You are correct, the limit is 0. Another elegant way to prove is using squeeze theorem.




Using -1 \le \cos (x) \le 1



We've



-\sqrt{x^6+5x^4+7x^2} \le {\left(\sqrt{x^6+5x^4+7x^2}\cos(1+x^{-1000})\right)} \le \sqrt{x^6+5x^4+7x^2}



Thus,



\lim_{x\to 0} \sqrt{x^6+5x^4+7x^2} \le \lim_{x\to 0}{\left(\sqrt{x^6+5x^4+7x^2}\cos(1+x^{-1000})\right)} \le \lim_{x\to 0}\sqrt{x^6+5x^4+7x^2}




\implies 0\le \lim_{x\to 0}{\left(\sqrt{x^6+5x^4+7x^2}\cos(1+x^{-1000})\right)} \le 0



\implies \color{blue}{\lim_{x\to 0}{\left(\sqrt{x^6+5x^4+7x^2}\cos(1+x^{-1000})\right)}=0}


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...