Wednesday, 22 July 2015

calculus - Maclaurin polynomial of tan(x)




The method used to find the Maclaurin polynomial of sin(x), cos(x), and $e^x$ requires finding several derivatives of the function. However, you can only take a couple derivatives of tan(x) before it becomes unbearable to calculate.



Is there a relatively easy way to find the Maclaurin polynomial of tan(x)?



I considered using tan(x)=sin(x)/cos(x) somehow, but I couldn't figure out how.


Answer



Long division of series.



$$ \matrix{ & x + \frac{x^3}{3} + \frac{2 x^5}{15} + \dots
\cr 1 - \frac{x^2}{2} + \frac{x^4}{24} + \ldots & ) \overline{x - \frac{x^3}{6} + \frac{x^5}{120} + \dots}\cr

& x - \frac{x^3}{2} + \frac{x^5}{24} + \dots\cr & --------\cr
&
\frac{x^3}{3} - \frac{x^5}{30} + \dots\cr
& \frac{x^3}{3} - \frac{x^5}{6} + \dots\cr
& ------\cr
&\frac{2 x^5}{15} + \dots \cr
&\frac{2 x^5}{15} + \dots \cr
& ----}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...