Saturday, 19 December 2015

algebra precalculus - Simplification algebraic of a cube root.



I am trying to simplify this:



$$\frac{1000}{\pi \cdot (\frac{500}{\pi})^{\frac{2}{3}}}$$




and I think it becomes:



$$2 \cdot \sqrt[3]{\frac{500}{\pi}}$$



I basically thought we cube root the $\frac{500}{\pi}$ and then multiply the denominator by $\frac{500}{\pi}$ which could cancel out some stuff. This is how I thought about it:



$$\frac{1000}{\pi \cdot \sqrt[3]{\frac{500}{\pi}} \cdot \frac{500}{\pi}}$$
$$ = \frac{1000 \cdot \pi}{\pi \cdot \sqrt[3]{\frac{500}{\pi}} \cdot 500}$$




Is there a better way to do this cancellation?


Answer



$$\frac{1000}{\pi \cdot (\frac{500}{\pi})^{\frac{2}{3}}}=$$



$$ 2 \frac {\frac {500}{\pi}}{(\frac {500}{\pi})^\frac {2}{3}}=$$



$$ 2(\frac {500}{\pi})^\frac {1}{3}=$$



$$10(\frac {4}{\pi})^\frac {1}{3}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...