Monday, 14 December 2015

sequences and series - Show sumlimitsinftyn=02nchoosenxn=(14x)1/2



How do you prove that \sum\limits_{n=0}^{\infty}{2n \choose n}x^n=(1-4x)^{-1/2}?
I tried to identify the sum as a binomial series, but the 4 and the -1/2 puzzle me.
(This series arises in studying the first passage time of a simple random walk.)


Answer



The key identities are the duplication formula for the factorial (which I'll recast in a more convenient format):




\binom{2n}{n}=\frac{4^n}{\sqrt \pi}\frac{\left(n-\frac12\right)!}{n!}



and the reflection formula



\left(-n-\frac12\right)!\left(n-\frac12\right)!=(-1)^n\pi



Making the appropriate replacements, we obtain



\binom{2n}{n}=(-4)^n\frac{\sqrt \pi}{n!\left(-n-\frac12\right)!}=(-4)^n\frac{\left(-\frac12\right)!}{n!\left(-n-\frac12\right)!}=(-4)^n\binom{-\frac12}{n}




You can proceed from that...


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...