Monday, 14 December 2015

sequences and series - Show $sumlimits_{n=0}^{infty}{2n choose n}x^n=(1-4x)^{-1/2}$



How do you prove that $\sum\limits_{n=0}^{\infty}{2n \choose n}x^n=(1-4x)^{-1/2}$?
I tried to identify the sum as a binomial series, but the $4$ and the $-1/2$ puzzle me.
(This series arises in studying the first passage time of a simple random walk.)


Answer



The key identities are the duplication formula for the factorial (which I'll recast in a more convenient format):




$$\binom{2n}{n}=\frac{4^n}{\sqrt \pi}\frac{\left(n-\frac12\right)!}{n!}$$



and the reflection formula



$$\left(-n-\frac12\right)!\left(n-\frac12\right)!=(-1)^n\pi$$



Making the appropriate replacements, we obtain



$$\binom{2n}{n}=(-4)^n\frac{\sqrt \pi}{n!\left(-n-\frac12\right)!}=(-4)^n\frac{\left(-\frac12\right)!}{n!\left(-n-\frac12\right)!}=(-4)^n\binom{-\frac12}{n}$$




You can proceed from that...


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...