Friday, 25 December 2015

how to show that this complex series converge?

If $$\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$$ Converges( s is real)

and $\operatorname{Re}(z)>s$.
Then $$\sum_{n=1}^{\infty} \frac{a_{n}}{n^{z}}$$
also converges. $a_n$ is complex sequence.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...