Tuesday, 29 December 2015

calculus - Evaluate $ int_{0}^{infty} frac{1}{sqrt{x(1+e^x)}}mathrm dx $




I would like to evaluate:
$$ \int_{0}^{\infty} \frac{1}{\sqrt{x(1+e^x)}}\mathrm dx $$
Given that I can't find $ \int \frac{1}{\sqrt{x(1+e^x)}}\mathrm dx $, a substitution is needed: I tried $$ u=\sqrt{x(1+e^x)} $$ and $$ u=\frac{1}{\sqrt{x(1+e^x)}} $$ but I could not get rid of $x$ in the new integral....
Do you have ideas of substitution?


Answer



$$
\begin{align}
\int_0^\infty\frac{1}{\sqrt{x(1+e^x)}}\mathrm{d}x
&=2\int_0^\infty\frac{1}{\sqrt{1+e^{x^2}}}\mathrm{d}x\\

&=2\int_0^\infty(1+e^{-x^2})^{-1/2}e^{-x^2/2}\;\mathrm{d}x\\
&=2\int_0^\infty\sum_{k=0}^\infty(-\tfrac{1}{4})^k\binom{2k}{k}e^{(2k+1)x^2/2}\;\mathrm{d}x\\
&=\sum_{k=0}^\infty(-\tfrac{1}{4})^k\binom{2k}{k}\sqrt{\frac{2\pi}{2k+1}}
\end{align}
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...