Saturday, 19 December 2015

functional analysis - Determine $| A|$ when we consider the norms $|cdot|_{1}=|cdot|_infty$.


Let $M$ a matrix of $m\times n$. Consider $A$ as a linear map of $\mathbb{K}^n\to\mathbb{K}^m$. Determine $\|A\|$ when we consider the norms $\|\cdot\|_1$ and $\|\cdot\|_\infty$ in $\mathbb{K}^n$ and $\mathbb{K}^m$, respect.





I have the following questions:



First of all, the linear map $A:\mathbb{K}^n\to\mathbb{K}^m$ has a explicit form?.



Second, how I understand the $1$-norm and the infinite norm for a matrix of side $m\times n$??



Can help me in this problem, I try use cauchy inq. thanks!!

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...