I'm trying to show that $$\lim_{n\to \infty} x_n=\lim_{n\to \infty}\frac{1}{\sqrt n}\left|\sum_{k=1}^n (-1)^k\sqrt k\right|= \frac{1}{2}.$$
Assuming $\lim\limits_{n\to\infty} x_n=x$ exists, we have
$$x_{2n}=\frac{\sqrt{2n-1}(-x_{2n-1})+\sqrt {2n}}{\sqrt {2n}}$$
Letting $n\to \infty$,
$$\quad \quad x=-x+1$$
$$x=\frac{1}{2}$$
But I'm stuck on proving the existence of $\lim x_n$. Any idea?
Update: I just solved the problem using sandwich theorem + integral test. Still, I would like to see a continuation of my initial idea, i.e. proving
$\{x_{2n}\}$ is monotonically increasing (similarly, $\{x_{2n+1}\}$ is monotonically decreasing)
Answer
$\displaystyle \lim_{n\to\infty}\frac{1}{\sqrt{n}}\left|\sum\limits_{k=1}^n (-1)^k\sqrt{k}\right|
= \lim_{n\to\infty}\frac{1}{\sqrt{2n}}\sum\limits_{k=1}^n \frac{1}{\sqrt{2k-1}+\sqrt{2k}} $
$\displaystyle \frac{1}{2\sqrt{2n}}\sum\limits_{k=1}^n\frac{1}{ \sqrt{2k} } < \frac{1}{\sqrt{2n}}\sum\limits_{k=1}^n\frac{1}{\sqrt{2k-1} +\sqrt{2k} } $$\displaystyle < \frac{1}{2\sqrt{2n}}\sum\limits_{k=1}^n\frac{1}{\sqrt{2k-1} } < \frac{1}{2\sqrt{2n}}\left(1+\sum\limits_{k=1}^{n-1} \frac{1}{ \sqrt{2k} }\right)$
With Riemann we get:
$\displaystyle \frac{1}{\sqrt{2n}}\sum\limits_{k=1}^n\frac{1}{ \sqrt{2k} } = \frac{1}{2n}\sum\limits_{k=1}^n\frac{1}{\sqrt{k/n}} \to \frac{1}{2}\int\limits_0^1\frac{dx}{\sqrt{x}} = \sqrt{x}|_0^1 =1$
And therefore the confirmation of the claim.
About the monotonie.
$\displaystyle s_n := \sum\limits_{k=1}^n \frac{1}{\sqrt{2k-1}+\sqrt{2k}}$
Assumption about the monotonie: $\enspace \displaystyle \frac{s_n}{\sqrt{2n}} \enspace$ is strictly increasing.
$\displaystyle \frac{s_n}{\sqrt{2n}} < \frac{s_{n+1}}{\sqrt{2{n+2}}} \,$ leads to
$\displaystyle \left(\frac{1}{\sqrt{2n}} - \frac{1}{\sqrt{2n+2}}\right)s_n < \frac{1}{\sqrt{2n+2}}\frac{1}{ \sqrt{2n+1} + \sqrt{2n+2} }\,$ and therefore to
$\displaystyle s_n < a_n:=\frac{\sqrt{2n}}{2}\frac{ \sqrt{2n+2}+\sqrt{2n} }{\sqrt{2n+2} +\sqrt{2n+1} } $
For $n=1$ it’s o.k. . Assume it’s correct for $n$ . $(*)$
Then we have to show that it's also correct for $n \to n+1$ .
$\displaystyle s_{n+1} < \frac{\sqrt{2n}}{2}\frac{ \sqrt{2n+2}+\sqrt{2n} }{\sqrt{2n+2} +\sqrt{2n+1} } + \frac{1}{\sqrt{2n+1} +\sqrt{2n+2} } < a_{n+1}$
The first inequation follows from the assumption $(*)$ and the second inequation can be proved by some transformations, $2n$ replaced by $x$ and $x\geq 0$:
$(\sqrt{x}(\sqrt{x+2} +\sqrt{x}) + 2)(\sqrt{x+4}+\sqrt{x+3}) <$
$<\sqrt{x+2}(\sqrt{x+4}+ \sqrt{x+2})( \sqrt{x+2}+\sqrt{x+1})$
Transformations:
$(\sqrt{x}(\sqrt{x+2} +\sqrt{x}) + 2)(\sqrt{x+4}+\sqrt{x+2}) $$+ (\sqrt{x}(\sqrt{x+2} +\sqrt{x}) + 2)(\sqrt{x+3}-\sqrt{x+2}) <$
$<\sqrt{x+2}(\sqrt{x+4}+ \sqrt{x+2})( \sqrt{x+2}+\sqrt{x+1})$
$(\sqrt{x}(\sqrt{x+2} +\sqrt{x}) + 2)(\sqrt{x+3}-\sqrt{x+2}) $$< (\sqrt{x+2}(\sqrt{x+2}+\sqrt{x+1})-(\sqrt{x}(\sqrt{x+2}+\sqrt{x})+2))(\sqrt{x+4}+\sqrt{x+2})$
$(\sqrt{x}\sqrt{x+2} +x+2)(\sqrt{x+3}-\sqrt{x+2}) $$< (\sqrt{x+2}\sqrt{x+4} +x+2)(\sqrt{x+1}-\sqrt{x})$
This is true because of:
$\sqrt{x}\sqrt{x+2} +x+2< \sqrt{x+2}\sqrt{x+4} +x+2$
$\sqrt{x+3}-\sqrt{x+2} < \sqrt{x+1}-\sqrt{x}$
Note: $\enspace\sqrt{x+1+a}-\sqrt{x+a}~$ is decreasing by growing $\,a>-x$
No comments:
Post a Comment