I'm trying to show that lim
Assuming \lim\limits_{n\to\infty} x_n=x exists, we have
x_{2n}=\frac{\sqrt{2n-1}(-x_{2n-1})+\sqrt {2n}}{\sqrt {2n}}
Letting n\to \infty,
\quad \quad x=-x+1
x=\frac{1}{2}
But I'm stuck on proving the existence of \lim x_n. Any idea?
Update: I just solved the problem using sandwich theorem + integral test. Still, I would like to see a continuation of my initial idea, i.e. proving
\{x_{2n}\} is monotonically increasing (similarly, \{x_{2n+1}\} is monotonically decreasing)
Answer
\displaystyle \lim_{n\to\infty}\frac{1}{\sqrt{n}}\left|\sum\limits_{k=1}^n (-1)^k\sqrt{k}\right| = \lim_{n\to\infty}\frac{1}{\sqrt{2n}}\sum\limits_{k=1}^n \frac{1}{\sqrt{2k-1}+\sqrt{2k}}
\displaystyle \frac{1}{2\sqrt{2n}}\sum\limits_{k=1}^n\frac{1}{ \sqrt{2k} } < \frac{1}{\sqrt{2n}}\sum\limits_{k=1}^n\frac{1}{\sqrt{2k-1} +\sqrt{2k} } \displaystyle < \frac{1}{2\sqrt{2n}}\sum\limits_{k=1}^n\frac{1}{\sqrt{2k-1} } < \frac{1}{2\sqrt{2n}}\left(1+\sum\limits_{k=1}^{n-1} \frac{1}{ \sqrt{2k} }\right)
With Riemann we get:
\displaystyle \frac{1}{\sqrt{2n}}\sum\limits_{k=1}^n\frac{1}{ \sqrt{2k} } = \frac{1}{2n}\sum\limits_{k=1}^n\frac{1}{\sqrt{k/n}} \to \frac{1}{2}\int\limits_0^1\frac{dx}{\sqrt{x}} = \sqrt{x}|_0^1 =1
And therefore the confirmation of the claim.
About the monotonie.
\displaystyle s_n := \sum\limits_{k=1}^n \frac{1}{\sqrt{2k-1}+\sqrt{2k}}
Assumption about the monotonie: \enspace \displaystyle \frac{s_n}{\sqrt{2n}} \enspace is strictly increasing.
\displaystyle \frac{s_n}{\sqrt{2n}} < \frac{s_{n+1}}{\sqrt{2{n+2}}} \, leads to
\displaystyle \left(\frac{1}{\sqrt{2n}} - \frac{1}{\sqrt{2n+2}}\right)s_n < \frac{1}{\sqrt{2n+2}}\frac{1}{ \sqrt{2n+1} + \sqrt{2n+2} }\, and therefore to
\displaystyle s_n < a_n:=\frac{\sqrt{2n}}{2}\frac{ \sqrt{2n+2}+\sqrt{2n} }{\sqrt{2n+2} +\sqrt{2n+1} }
For n=1 it’s o.k. . Assume it’s correct for n . (*)
Then we have to show that it's also correct for n \to n+1 .
\displaystyle s_{n+1} < \frac{\sqrt{2n}}{2}\frac{ \sqrt{2n+2}+\sqrt{2n} }{\sqrt{2n+2} +\sqrt{2n+1} } + \frac{1}{\sqrt{2n+1} +\sqrt{2n+2} } < a_{n+1}
The first inequation follows from the assumption (*) and the second inequation can be proved by some transformations, 2n replaced by x and x\geq 0:
(\sqrt{x}(\sqrt{x+2} +\sqrt{x}) + 2)(\sqrt{x+4}+\sqrt{x+3}) <
<\sqrt{x+2}(\sqrt{x+4}+ \sqrt{x+2})( \sqrt{x+2}+\sqrt{x+1})
Transformations:
(\sqrt{x}(\sqrt{x+2} +\sqrt{x}) + 2)(\sqrt{x+4}+\sqrt{x+2}) + (\sqrt{x}(\sqrt{x+2} +\sqrt{x}) + 2)(\sqrt{x+3}-\sqrt{x+2}) <
<\sqrt{x+2}(\sqrt{x+4}+ \sqrt{x+2})( \sqrt{x+2}+\sqrt{x+1})
(\sqrt{x}(\sqrt{x+2} +\sqrt{x}) + 2)(\sqrt{x+3}-\sqrt{x+2}) < (\sqrt{x+2}(\sqrt{x+2}+\sqrt{x+1})-(\sqrt{x}(\sqrt{x+2}+\sqrt{x})+2))(\sqrt{x+4}+\sqrt{x+2})
(\sqrt{x}\sqrt{x+2} +x+2)(\sqrt{x+3}-\sqrt{x+2}) < (\sqrt{x+2}\sqrt{x+4} +x+2)(\sqrt{x+1}-\sqrt{x})
This is true because of:
\sqrt{x}\sqrt{x+2} +x+2< \sqrt{x+2}\sqrt{x+4} +x+2
\sqrt{x+3}-\sqrt{x+2} < \sqrt{x+1}-\sqrt{x}
Note: \enspace\sqrt{x+1+a}-\sqrt{x+a}~ is decreasing by growing \,a>-x
No comments:
Post a Comment