Friday, 2 September 2016

algebra precalculus - Upper and lower bounds in regards to 0.(9)








I'm only doing this at GSCE and I'm really only asking here because of an interesting email conversation between my Grandfather and I regarding the fact that 0.(9) equals 1, so I'd appreciate it if you could make any explanation as simple as possible.



Basically, I have proven to my Grandfather that 0.(9) must equal 1, using the following method:



Let x = 0.(9)



So, 10x will equal 9.(9); 10x - x is 9x which is the same as 9.(9) - 0.(9) = 9, and therefore 9 / 9 is 1!




However, he has questioned the fact that 0.(9) * 9 equals 9, as he rightly stated that it equals 8.(9). I do remember learning in my maths lesson a rule regards to upper and lower bounds that meant that 8.(9) was actually the same as 9, or something along those lines, but I can not remember the correct statement to inform my Grandfather - so any suggestions would be appreciated.



Thanks in advance

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...