Give an example $\lim_{n \rightarrow \infty} a_n = +\infty, \lim_{n \rightarrow \infty} b_n = +\infty$ and $\lim_{n \rightarrow \infty}(a_n + b_n ) = -\infty$.
I think it's impossible, but my teacher says it's real
Answer
If $\lim_{n \rightarrow \infty} a_n = +\infty$ and $ \lim_{n \rightarrow \infty} b_n = +\infty$, then there is $N \in \mathbb N$ such that
$a_n,b_n> 0$ for $n>N$. Therefore $a_n+b_n> 0$ for $n>N$.
Hence we can not have that $\lim_{n \rightarrow \infty}(a_n + b_n ) = -\infty$.
No comments:
Post a Comment