Friday, 2 September 2016

limits - $lim_{n rightarrow infty} a_n = +infty, lim_{n rightarrow infty} b_n = +infty$ and $lim_{n rightarrow infty}(a_n + b_n ) = -infty$.



Give an example $\lim_{n \rightarrow \infty} a_n = +\infty, \lim_{n \rightarrow \infty} b_n = +\infty$ and $\lim_{n \rightarrow \infty}(a_n + b_n ) = -\infty$.




I think it's impossible, but my teacher says it's real


Answer



If $\lim_{n \rightarrow \infty} a_n = +\infty$ and $ \lim_{n \rightarrow \infty} b_n = +\infty$, then there is $N \in \mathbb N$ such that



$a_n,b_n> 0$ for $n>N$. Therefore $a_n+b_n> 0$ for $n>N$.



Hence we can not have that $\lim_{n \rightarrow \infty}(a_n + b_n ) = -\infty$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...