Sunday, 18 December 2016

algebra precalculus - How do I simplify $log (1/sqrt{1000})$?

How do I simplify $\log \left(\displaystyle\frac{1}{\sqrt{1000}}\right)$?



What I have done so far:



1) Used the difference property of logarithms
$$\log \left(\displaystyle\frac{1}{\sqrt{1000}}\right) = \log(1) - \log(\sqrt{1000}) $$



2) Used the exponent rule for logarithm




$$\log (1) - \frac{1}{2}\log (1000) $$



I'm stuck at this point. Can someone explain why and what I must do to solve this equation?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...