Friday, 30 December 2016

calculus - Proving limxto1left(tanleft(fracpix2right)lfloorxrfloorright) doesn't exist



I'm asked to prove that the following limit doesn't exist:
lim



My attempt was to break the case into one-sided limits. So, for example, I could prove that




\lim_{x \to 1^+} \tan \left(\frac{\pi x}{2} \right ) = -\infty



and
\lim_{x \to 1^-} \tan \left(\frac{\pi x}{2} \right ) = \infty



and then show that \lim_{x \to 1^+} \left (\tan \left(\frac{\pi x}{2} \right ) \lfloor x \rfloor \right ) \neq \lim_{x \to 1^-} \left (\tan \left(\frac{\pi x}{2} \right ) \lfloor x \rfloor \right )



using the product rule for infinite limits.



The only problem is that I'm not allowed to use the theorem about the limit of a composition of functions (g(t)=\pi t /2 and f(x)=\tan{x}) nor any theorem related to the limit of a continuous function when proving \lim_{x \to 1^+} \tan \left(\frac{\pi x}{2} \right ) = -\infty. I can however use the fact that \lim_{x \to \frac{\pi}{2}^+}\tan x=-\infty and \lim_{x \to \frac{\pi}{2}^-}\tan x=\infty. Is there any way I can prove it using the basic limit arithemtic rules?



Answer



Hint. You may observe that, as x \to 1,
\tan \left( \frac \pi2x\right)=-\frac{2}{\pi (x-1)}+\mathcal{O}(x-1) \tag1 and that
\lfloor x \rfloor =\begin{cases} 1 & \text{if } x \to 1^+ \\ 0 & \text{if } x \to 1^- \end{cases} giving
\tan \left( \frac \pi2x\right)\lfloor x \rfloor \to\begin{cases} -\infty & \text{if } x \to 1^+ \\ 0 & \text{if } x \to 1^- \end{cases} thus a limit doesn't exist as x \to 1.






To see (1), we may write, as x \to 1,
\begin{align} \tan \left( \frac \pi2x\right)&=\tan \left( \frac \pi2(x-1)+\frac \pi2\right)\\\\&=\frac{\cos\frac \pi2(x-1)}{-\sin\frac \pi2(x-1)}\\\\ &=\frac{1+\mathcal{O}((x-1)^2)}{-\sin\frac \pi2(x-1)}\\\\ &=\frac{1+\mathcal{O}((x-1)^2)}{-\frac \pi2(x-1)+\mathcal{O}((x-1)^3)}\\\\ &=-\frac{2}{\pi (x-1)}+\mathcal{O}(x-1). \end{align}







The notation \displaystyle f(x)=\mathcal{O}((x-x_0)^n) means that there exists some constant C around x_0 such that \displaystyle |f(x)|\leq C|x-x_0|^n for all x in a neighbourhood of x_0.




No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...