The above limit can be written as: lim.
The limit is an Indeterminate type of {0/0}. It can be solved using L'Hôpital's Rule:
\displaystyle\lim_{x\to -∞} \frac{e^x}{1/x} = \lim_{x\to -∞} \frac{\frac{d}{dx}\left[e^x\right]}{\frac{d}{dx}\left[1/x\right]} = \lim_{x\to -∞} \frac{e^x}{-1/x^2}
Here the numerator {e^x\to 0} and denominator {-1/x^2\to 0} as {x\to -∞}. So after using L'Hôpital's Rule the limit is still an Indeterminate type of {0/0}. How do I find a limit that's not an Indeterminate type?
No comments:
Post a Comment