Thursday, 29 December 2016

calculus - How do I prove displaystylelimxto(xcdotex)=0 using L'Hôpital's Rule?

The above limit can be written as: lim.



The limit is an Indeterminate type of {0/0}. It can be solved using L'Hôpital's Rule:




\displaystyle\lim_{x\to -∞} \frac{e^x}{1/x} = \lim_{x\to -∞} \frac{\frac{d}{dx}\left[e^x\right]}{\frac{d}{dx}\left[1/x\right]} = \lim_{x\to -∞} \frac{e^x}{-1/x^2}



Here the numerator {e^x\to 0} and denominator {-1/x^2\to 0} as {x\to -∞}. So after using L'Hôpital's Rule the limit is still an Indeterminate type of {0/0}. How do I find a limit that's not an Indeterminate type?

No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...