We have a matrix $A$ of order $m$ by $n$ and a matrix $B$ of order $n$ by $m$ where entries are from real numbers. We are given that $AB =I$ and we need to check whether $BA =I$ or not. If we have square matrices then it is true but here are rectangular matrices. I know that it doesn't hold true for rectangular matrices and I am trying hard to find some counter example but unable to find such matrix. I want to learn about how to construct matrices as counter examples in linear algebra as in this case. Thanks
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment