Monday, 12 December 2016

sequences and series - Prove that $sqrt{8}=1+dfrac34+dfrac{3cdot5}{4cdot8}+dfrac{3cdot5cdot7}{4cdot8cdot12}+ldots$



Prove that $\sqrt{8}=1+\dfrac34+\dfrac{3\cdot5}{4\cdot8}+\dfrac{3\cdot5\cdot7}{4\cdot8\cdot12}+\ldots$



My work:
$\sqrt8=\bigg(1-\dfrac12\bigg)^{-\frac32}$




Now, I suppose there is some "binomial expansion with rational co-efficients" or something similar for this, which I do not know. Please help.



N.B.: Any other solution is also acceptable, I do not have any restriction regarding the solution.


Answer



The binomial series is "just" the Taylor series of $(1+x)^{\alpha}$ at $x=0$.



Start deriving $f(x)=(1+x)^{\alpha}$ by $x$ and you get $\alpha(1+x)^{\alpha-1}$, then $\alpha(\alpha-1)(1+x)^{\alpha-2}$ for the first derivative etc.
The $n$th derivative is



$$\frac{d^n}{dx^n} (1+x)^{\alpha} = \alpha(\alpha-1)\cdots(\alpha-n+1)(1+x)^{\alpha-n}$$




So the Taylor series is



$$\sum_{n=0}^\infty \frac{f^{(n)}(0)}{n!} x^n= \sum_{n=0}^\infty \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!} x^n$$



If $\alpha$ is a non-negative integer this series becomes a finite sum and the $n$th coefficient is simply ${\alpha\choose n}$, so it makes sense to call it a "generalized" binomial coefficient and denote it by the same symbol, also if $\alpha$ is not a non-negative integer.



Now notice that the Taylor series has convergence radius $1$ and that $(1+x)^{\alpha}$ is real-analytic, therefore



$$(1+x)^{\alpha} = \sum_{n=0}^\infty {\alpha\choose n} x^n$$




for all $|x|<1$, in particular $x=-\frac{1}{2}$ and $\alpha=-3/2$. Now notice that $${-3/2\choose n}=\frac{(-1)^n}{n!2^n} 3\cdot 5\cdots (2n+1)$$



Then,



$$\begin{align}
\sqrt{8} &=(1-1/2)^{-3/2} = \sum_{n=0}^\infty \frac{(-1)^n}{n!2^n} 3\cdot 5\cdots (2n+1) \frac{1}{(-2)^n} = \sum_{n=0}^\infty \frac{3\cdot 5\cdots (2n+1)}{n! 4^n}\\
&= 1 + \frac{3}{4} + \frac{3\cdot 5}{4\cdot 8} + \frac{3\cdot 5\cdot 7}{4\cdot 8\cdot 12} + \cdots
\end{align}
$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...