Tuesday, 13 December 2016

calculus - If In=int10fracxnx2+2019,mathrmdx, evaluate limlimitsntoinftynIn



If

In=10xnx2+2019dx, find lim. Can somebody help me, please?



I've only found that \frac{1}{2020} \le nI_n \le \frac{1}{2019} knowing that x^2 \in [0,1], but it doesn't help to evaluate the limit.



I want a proof without the Arzelà-Ascoli theorem or dominated convergence.


Answer



The term nx^n in the numerator of our integral is almost a derivative: (x^n)' = nx^{n-1}, so this suggests the following approach.



Notice that by the product rule,
\begin{align} \frac{\mathrm d}{\mathrm dx}\bigg(x^n\cdot \frac{x}{x^2+2019}\bigg) &= nx^{n-1}\cdot\frac{x}{x^2+2019} + x^n\cdot\frac{\mathrm d}{\mathrm dx}\bigg(\frac{x}{x^2+2019}\bigg) \\ &= \frac{nx^n}{x^2+2019} + x^n\cdot \frac{-x^2+2019}{(x^2+2019)^2} \end{align}
For 0 \leqslant x \leqslant 1, the second term above is bounded above in absolute value by |x|^n = x^n. Integrating and applying the fundamental theorem of calculus gives
\begin{align} \int_0^1\frac{\mathrm d}{\mathrm dx}\bigg(x^n\cdot \frac{x}{x^2+2019}\bigg)\,\mathrm dx &= n\int_0^1\frac{x^n}{x^2+2019}\,\mathrm dx + \int_0^1 x^n\cdot \frac{-x^2+2019}{(x^2+2019)^2}\,\mathrm dx \\ \leadsto\quad\frac{1}{2020} &= nI_n + \int_0^1 x^n\cdot \frac{-x^2+2019}{(x^2+2019)^2}\,\mathrm dx. \end{align}
Hence,
\begin{align} nI_n = \frac{1}{2020} - \int_0^1 x^n\cdot \frac{-x^2+2019}{(x^2+2019)^2}\,\mathrm dx. \end{align}
By the triangle inequality and the fundamental theorem of calculus again,
\begin{align*} \bigg|\int_0^1 x^n\cdot \frac{-x^2+2019}{(x^2+2019)^2}\,\mathrm dx\bigg| &\leqslant \int_0^1\bigg|x^n\cdot \frac{-x^2+2019}{(x^2+2019)^2}\bigg|\,\mathrm dx \\ &\leqslant \int_0^1 x^n\,\mathrm dx \\ &= \frac{1}{n+1} \to 0,\quad\text{as $n\to\infty$.} \end{align*}
Thus,
\lim_{n\to\infty}nI_n = \frac{1}{2020}.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...