Thursday 29 December 2016

calculus - How to evaluate this series using fourier series?



With the help of Hermite's Integral,I got
$$\sum_{n=1}^{\infty }\frac{1}{n}\int_{2\pi n}^{\infty }\frac{\sin x}{x}\mathrm{d}x=\pi-\frac{\pi}{2}\ln(2\pi)$$
I'd like to know can we solve this one using fourier series?


Answer




We begin with the expression



$$S=\sum_{n=1}^\infty \frac{1}{n}\int_{2\pi n}^\infty \frac{\sin (x)}{x}\,dx \tag 1$$



Enforcing the substitution $x \to 2\pi n x$ in $(1)$ yields



$$\begin{align}
\sum_{n=1}^\infty \frac{1}{n}\int_{2\pi n}^\infty \frac{\sin (x)}{x}\,dx&=\sum_{n=1}^\infty \frac{1}{n} \int_{1}^\infty \frac{\sin (2\pi nx)}{x}\,dx\\\\
&=\int_{1}^\infty \frac 1x\sum_{n=1}^\infty \frac{\sin (2\pi nx)}{n}\,dx \tag 2\\\\
&=\sum_{k=1}^\infty \int_{k}^{k+1}\frac1x \left(\frac{\pi}{2}(1-2(x-k))\right)\,dx \tag 3\\\\

&=\frac{\pi}{2} \sum_{k=1}^\infty \left((2k+1)\log\left(\frac{k+1}{k}\right)-2\right) \tag 4\\\\
\end{align}$$



where we recognized the Fourier sine series for $\frac{\pi}{2}(1-2x)$ for $x\in(0,1)$ to go from $(2)$ to $(3)$.



To evaluate the sum in $(4)$, we write the partial sum $S_K$



$$\begin{align}
S_K&=\sum_{k=1}^K \left((2k+1)\log\left(\frac{k+1}{k}\right)-2\right)\\\\
&=-2K+\sum_{k=1}^K \left((2k+1)\log(n+1)-(2k-1)\log(n)\right)-2\sum_{k=1}^K\log(k) \\\\

&=-2K+(2K+1)\log(K+1)-2\log(K!) \\\\
&=-2K+(2K+1)\log(K)+(2K+1)\log\left(1+\frac1K\right)-2\log\left(K!\right) \tag 5\\\\
&=-2K+(2K+1)\log(K)+2-2\log\left(\sqrt{2\pi K}\left(\frac{K}{e}\right)^K\right)+O\left(\frac1K\right) \tag 6\\\\
&=2-\log(2\pi)+O\left(\frac1K\right)
\end{align}$$



In going from $(5)$ to $(6)$, we used the asymptotic expansion for the logarithm function, $\log(1+x)=x+O(x^2)$ and Stirling's Formula



$$K!=\left(\sqrt{2\pi K}\left(\frac{K}{e}\right)^K\right)\left(1+O\left(\frac1K\right)\right)$$




Finally, putting it all together, we find that



$$\begin{align}
S&=\sum_{n=1}^\infty \frac{1}{n}\int_{2\pi n}^\infty \frac{\sin (x)}{x}\,dx\\\\
&=\frac{\pi}{2}\lim_{K\to \infty}S_K\\\\
&=\pi-\frac{\pi}{2}\log(2\pi)
\end{align}$$



and therefore




$$\bbox[5px,border:2px solid #C0A000]{\sum_{n=1}^\infty \frac{1}{n}\int_{2\pi n}^\infty \frac{\sin (x)}{x}\,dx=\pi-\frac{\pi}{2}\log(2\pi)}$$



as was to be shown!


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...