Thursday 22 December 2016

real analysis - Number of Functions satisfying linear homogeneous function criterion

Let us suppose I have a continuous smooth function



$f : \mathbb R^n\rightarrow \mathbb R$



Satisfying



$f(\lambda x_1,\lambda x_2, \ldots ,\lambda x_n)= \lambda f( x_1,x_2, \ldots , x_n),\space \forall\lambda\in\mathbb R \space \ldots(linear \space condition)$



My objective is to find the function $f$




Attempt:



Expand in Taylor series the function $f$ for $n$ variables $(i.e.\space x_i)\space in \space the\space equation\space of \space linear \space condition$



1)The constant term is zero as $f(0,...,0)=0$.



2)The linear terms cancel either side.



3)With the higher order terms of coefficients c, $$\lambda^{k-1}c_k=c_k$$




This condition holds true $\forall k,\lambda \in \mathbb R$



This implies that all coefficients of higher order(>1) terms are zero.



Hence I conclude that the function is $$f( x_1,x_2, \ldots , x_n)= a_1 x_1 + a_2 x_2 \ldots +a_n x_n$$



for some constants $a_i(1\leq i \leq n)$



My doubt is:




1) Is my reasoning correct, or is there a better way to do it?



2) Is this the only unique solution for the function?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...