Monday 19 December 2016

trigonometry - Induction proof of the identity $cos x+cos(2x)+cdots+cos (nx) = frac{sin(frac{nx}{2})cosfrac{(n+1)x}{2}}{sin(frac{x}{2})}$





Prove that:$$\cos x+\cos(2x)+\cdots+\cos (nx)=\frac{\sin(\frac{nx}{2})\cos\frac{(n+1)x}{2}}{\sin(\frac{x}{2})}.\ (1)$$




My attempt:$$\sin\left(\frac{x}{2}\right)\sum_{k=1}^{n}\cos{(kx)}$$$$=\sum_{k=1}^{n}\sin\left(\frac{x}{2}\right)\cos{(kx)} $$ (Applying $\sin x\cos y =\frac{1}{2}\left[\sin(x+y)+\sin(x-y)\right]$)
$$=\sum_{k=1}^{n}\frac{1}{2}\sin\left(\frac{x}{2}-kx\right)+\frac{1}{2}\sin\left(\frac{x}{2}+kx\right).$$Multiplying $(1)$ by $\sin\left(\frac{x}{2}\right)$ ,gives: $$\sum_{k=1}^{n}\sin\left(\frac{x}{2}\right)\cos(kx)=\sin\left(\frac{nx}{2}\right)\cos{\frac{(n+1)x}{2}}$$ $$\Leftrightarrow\sum_{k=1}^{n}\left[\sin\left(\frac{x}{2}-kx\right)+\sin\left(\frac{x}{2}+kx\right)\right]=\sin\left(-\frac{x}{2}\right)+\sin\left(\frac{x}{2}+nx\right).$$Then, by induction on $n$ and using $(\sin x\sin y)$ and $(\sin x +\sin y)$ formulas, I end in here: $$\sum_{k=1}^{n+1}\sin\left(\frac{x}{2}\right)\cos(kx)=\left[2\sin\left(\frac{nx}{2}\right)\cos\frac{(n+1)x}{2}\right]+\left[2\sin\left(\frac{x}{2}\right)\cos(n+1)x\right].$$ Any help would be appreciated, thanks!


Answer




Here is the induction step: it comes down to proving
\begin{gather*}\frac{\sin \dfrac{nx}{2} \cos\dfrac{(n+1)x}{2}}{\sin\dfrac{x}{2}}+\cos(n+1)x=\frac{\sin\dfrac{(n+1)x}{2}\cos\dfrac{(n+2)x}{2}}{\sin(\dfrac{x}{2})}\\
\text{or}\qquad\sin\dfrac{nx}{2}\cos\dfrac{(n+1)x}{2}+\sin\dfrac{x}{2}\cos(n+1)x=\sin\dfrac{(n+1)x}{2} \cos\dfrac{(n+2)x}{2}
\end{gather*}
Now use the linearisation formulae:
\begin{cases}\displaystyle
\sin\frac{nx}{2}\cos\frac{(n+1)x}{2}=\tfrac12\biggl(\sin\frac{(2n+1)x}{2}-\sin\frac x2\biggr),\\[1ex]
\sin\dfrac{x}{2}\cos(n+1)x=\frac12\biggl(\sin\dfrac{(2n+3)x}{2}-\sin\dfrac{(2n+1)x}{2}\biggr),
\end{cases}
whence the l.h.s. is

$$\frac12\biggl(\sin\dfrac{(2n+3)x}{2}-\sin\frac x2\biggr)=\sin\frac{(n+1)x}2\,\cos\frac{(n+2)x}2$$
by the factorisation formula: $\;\sin p-\sin q=2\sin\dfrac{p-q}2\cos\dfrac{p+q}2$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...