Tuesday, 20 December 2016

real analysis - Prove limlimitsnrightarrowinftyxn=0 iff limlimitsnrightarrowinftyfrac1xn=infty



For xn>0 n=1,2,3,... Prove lim iff \lim\limits_{n\rightarrow +\infty}\frac{1}{x_n}=+\infty
Working proof:



\forall M>0, \exists N such that x_n>M, \forall n \ge N




x_n>M\Rightarrow(1/x_n)<(1/M)



Choose N=[M]+1 \Rightarrow \frac{1}{x_n}<(1/x_N)=(1/x_{[M]+1})



I have no idea what the next step would be or if I'm even headed in the right direction...


Answer



Suppose x_n \to 0. Let M in \mathbb R+, there exists N such that for all n ≥ N, |x_n| ≤ 1/M, so for all n ≥ N, |1/x_n| ≥ M (since x > 0 \to 1/x decreases). So 1/x_n \to +\infty



The same for the other direction.



No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...