Thursday, 2 February 2017

limits - does $lim_{Ntoinfty}frac{sum_{i=1}^N a_i}{sum_{i=1}^N b_i}$ converge to $lim_{Ntoinfty}frac{1}{N}sum_{i=1}^Nfrac{a_i}{b_i}$

Can this ever be the case?
$$\lim\limits_{N\to\infty}\frac{\sum\limits_{i=1}^N a_i}{\sum\limits_{i=1}^N b_i} = \lim\limits_{N\to\infty}\frac{1}{N}\sum_{i=1}^N\frac{a_i}{b_i}$$ with $a_i>0$, $b_i>0$, $a_iothers pointed out simulations indicate convergence, but is there formal ground to it?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...