Wednesday, 1 February 2017

limits - Find $lim_{nrightarrowinfty}frac{n}{(n!)^{1/n}}$




I am having trouble showing $$\lim_{n\rightarrow\infty}\frac{n}{(n!)^{1/n}}=e.$$


Answer



Let $a_{n}=n^{n}/n!$ and then $$a_{n+1}/a_{n}=\{(n +1)^{n+1}/(n+1)!\}\{n!/n^{n}\}=\left(1+\frac{1}{n}\right)^{n}$$ which tends to $e$ and therefore $a_{n}^{1/n}$ also tends to $e$.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...