Monday, 6 February 2017

real analysis - Is there a form $lim_{xtoinfty}left[frac{infty}{infty}right] $ of l'Hôpital's rule?

In course of learning L'Hospital rule I've learned both $\displaystyle\lim_{x\to\infty}\left[\dfrac{0}{0}\right]$ and $\displaystyle\lim_{x\to0}\left[\dfrac{\infty}{\infty}\right]$ form. But is there a form $\displaystyle\lim_{x\to\infty}\left[\dfrac{\infty}{\infty}\right]?$



For example can I evaluate $\displaystyle\lim_{x\to\infty}\dfrac{x}{e^x}$ as follows:



$$\displaystyle\lim_{x\to\infty}\dfrac{x}{e^x}=\displaystyle\lim_{x\to\infty}\dfrac{1}{e^x}=0?$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...