Saturday, 4 February 2017

sequences and series - Where did the negative answer come from?



The question is to evaluate $\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\cdots }}}}$

$$x=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\cdots }}}}$$
$$x^2=2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\cdots }}}}$$
$$x^2=2+x$$
$$x^2-x-2=0$$
$$(x-2)(x+1)=0$$
$$x=2,-1$$



because $x$ is positive $x=2$ is the answer. but where did the $x=-1$ come from ?


Answer



$x=\sqrt{2+\underbrace{\sqrt{2+\sqrt{2+\sqrt{2+\cdots}}}}_{\text{$x$}}}$, so we get $x=\sqrt{2+x}$.




Now there is only one solution. If we square both sides, we add the case $-x=\sqrt{2+x}$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...