How to find summation of the series $1 + \dfrac {1}{3} + \dfrac {1\cdot 3}{3\cdot 6} + \dfrac {1\cdot 3\cdot 5}{3\cdot 6\cdot 9} + \dfrac {1\cdot 3\cdot 5\cdot 7}{3\cdot 6\cdot 9\cdot 12} + .....$ ?
I can't find any particular sequence.Please help!
How to find summation of the series $1 + \dfrac {1}{3} + \dfrac {1\cdot 3}{3\cdot 6} + \dfrac {1\cdot 3\cdot 5}{3\cdot 6\cdot 9} + \dfrac {1\cdot 3\cdot 5\cdot 7}{3\cdot 6\cdot 9\cdot 12} + .....$ ?
I can't find any particular sequence.Please help!
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment