If $k\in\Bbb R$ is fixed, find all $f:\Bbb R\to\Bbb R$ that satisfy $f(f(x))=k$ for all real $x$.
If $k\ge 0$, $f(x)=|k+g(x)-g(|x|)|$ is a solution for any $g:\Bbb R\to\Bbb R$.
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment