Wednesday, 19 July 2017

Functional equation: $f(f(x))=k$


If $k\in\Bbb R$ is fixed, find all $f:\Bbb R\to\Bbb R$ that satisfy $f(f(x))=k$ for all real $x$.





If $k\ge 0$, $f(x)=|k+g(x)-g(|x|)|$ is a solution for any $g:\Bbb R\to\Bbb R$.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...