I want to check, whether $\sum\limits_{n=1}^{\infty}\frac{1+(-1)^n}{n}$ converges or diverges.
Leibniz's test failed, and ratio test just made it even more complicated, so i tried to use the comparison test, but i can't find a suitable series so that $\lim\limits_{n \rightarrow \infty} \frac{a_n}{b_n}$ exists..
Answer
To prove: $\sum_{n\geq 1} \frac{1+(-1)^n}{n}$ diverges.
Proof: \begin{align*} \sum _{n\geq 1} \frac{1+(-1)^n}{n} &= \sum _{k\geq 1} \frac{1+(-1)^{2k}}{2k} + \sum _{k\geq 1} \frac{1+(-1)^{2k-1}}{2k-1} \\
&= \sum _{k\geq 1} \frac{2}{2k} + \sum _{k\geq 1} \frac{0}{2k-1} \\\
&= \sum _{k\geq 1} \frac{1}{k} \end{align*}
Because $\sum _{k\geq 1} \frac{1}{k}$ diverges, $\sum_{n\geq 1} \frac{1+(-1)^n}{n}$ diverges as well. \qed
No comments:
Post a Comment