Saturday, 22 July 2017

real analysis - Convergence of $sumlimits_{n=1}^{infty}frac{1+(-1)^n}{n}$



I want to check, whether $\sum\limits_{n=1}^{\infty}\frac{1+(-1)^n}{n}$ converges or diverges.



Leibniz's test failed, and ratio test just made it even more complicated, so i tried to use the comparison test, but i can't find a suitable series so that $\lim\limits_{n \rightarrow \infty} \frac{a_n}{b_n}$ exists..


Answer



To prove: $\sum_{n\geq 1} \frac{1+(-1)^n}{n}$ diverges.




Proof: \begin{align*} \sum _{n\geq 1} \frac{1+(-1)^n}{n} &= \sum _{k\geq 1} \frac{1+(-1)^{2k}}{2k} + \sum _{k\geq 1} \frac{1+(-1)^{2k-1}}{2k-1} \\
&= \sum _{k\geq 1} \frac{2}{2k} + \sum _{k\geq 1} \frac{0}{2k-1} \\\
&= \sum _{k\geq 1} \frac{1}{k} \end{align*}
Because $\sum _{k\geq 1} \frac{1}{k}$ diverges, $\sum_{n\geq 1} \frac{1+(-1)^n}{n}$ diverges as well. \qed


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...