Wednesday, 19 July 2017

calculus - Limits with trigonometric functions without using L'Hospital Rule.

I want to find the limits $$\lim_{x\to \pi/2} \frac{\cos x}{x-\pi/2} $$
and
$$\lim_{x\to\pi/4} \frac{\cot x - 1}{x-\pi/4} $$



and

$$\lim_{h\to0} \frac{\sin^2(\pi/4+h)-\frac{1}{2}}{h}$$
without L'Hospital's Rule.



I know the fundamental limits $$\lim_{x\to 0} \frac{\sin x}{x} = 1,\quad \lim_{x\to 0} \frac{\cos x - 1}{x} = 0 $$



Progress



Using $\cos x=\sin\bigg(\dfrac\pi2-x\bigg)$ I got $-1$ for the first limit.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...